
Match

1 / 11

0X202408200006

Match Audit Summary
Match Audit

Document information
Audit results
Audited target file

Vulnerability analysis
Vulnerability distribution
Summary of audit results
Contract file
Analysis of audit results

Re-Entrancy
Arithmetic Over/Under Flows
Unexpected Blockchain Currency
Delegatecall
Default Visibilities
Entropy Illusion
External Contract Referencing
Unsolved TODO comments
Short Address/Parameter Attack
Unchecked CALL Return Values
Race Conditions / Front Running
Denial Of Service (DOS)
Block Timestamp Manipulation
Constructors with Care
Unintialised Storage Pointers
Floating Points and Numerical Precision
tx.origin Authentication
Permission restrictions

2 / 11

0X202408200006

Project name : Match Contract

Project address: None

Code URL : https://github.com/socialmatch/contract-audit-armors

Commit : 00b8a8f6bb3ca01f0ce9d08b9c2383635b7de30b

Project target : Match Contract Audit

Blockchain : Base

Test result : PASSED

Audit Info

Audit NO : 0X202408200006

Audit Team : Armors Labs

Audit Proofreading: https://armors.io/#project-cases

The Match team asked us to review and audit their Match contract. We looked at the code and now publish our

results.

Here is our assessment and recommendations, in order of importance.

Name Auditor Version Date

Match Audit Rock, Sophia, Rushairer, Rico, David, Alice 1.0.1 2024-08-20

Note that:

1. RFGDeposit & SingleTokenStaking Contracts

These contracts include a pause functionality, allowing administrators to halt operations when necessary.

2. StakingManager.sol

ERC-1822 (UUPS) Upgradable Contract:

The contract is upgradable, with upgrade permissions assigned to the AdminRole .

 upgradePool Function:

Match Audit Summary

Match Audit

Document information

Audit results

https://github.com/socialmatch/contract-audit-armors
https://armors.io/#project-cases

3 / 11

0X202408200006

Allows the AdminRole to upgrade associated pool contracts (SinglePool, CouplePool, GroupPool).

Note: Upgrades can be a double-edged sword. While they enable iteration and issue resolution, they

also introduce risks. If upgrade permissions are misused, the new logic contract could potentially do

anything. It is recommended to manage permissions (especially upgrade permissions) through multi-

signature solutions like Gnosis Safe.

 createPool Function:

The OperatorRole can create instances of the corresponding pool contracts.

Issue: The parameter pid is not strongly associated with the pool contract, meaning pid can be 1

while poolProxy could point to a non-corresponding address. This could cause operational confusion.

 selfStake & selfUnstake Functions:

These functions handle individual staking and unstaking.

Issue: When pid is 0 or 8 , the token ID is treated as 1, 2, 4 , which could lead to operational

confusion.

Risk: During these operations, tokens are minted for users. However, if the minting limit is reached, the

entire process (especially unstaking) will revert, potentially leading to users being unable to unstake.

Recommendation: Implement a limit check to allow users to exit normally.（This issue has been

fixed using a try-catch block）

Social Staking:

a. socialStake : Participation

b. cancelSocialStake : Cancellation

c. applySocialUnstake : Apply for Unstaking

d. agreeSocialUnstake : Approve Unstaking

e. forceSocialUnstake : Force Unstaking

f. Issue: In the cancelSocialStake , agreeSocialUnstake , and forceSocialUnstake functions, the

internal method returnNftsBackAndClaimReward utilizes a calls-loop pattern (looping external calls) to

transfer NFTs. This approach is generally not recommended as it could lead to DoS attacks (e.g., from

malicious receiving contracts). It is advisable to use a pull-over-push model, where the state is marked,

and users are responsible for claiming their NFTs, or adopt safeBatchTransferFrom .

Note that as of the date of publishing, the above review reflects the current understanding of known security patterns

as they relate to the Match contract. The above should not be construed as investment advice.

Based on the widely recognized security status of the current underlying blockchain and smart contract, this audit

report is valid for 3 months from the date of output.

Disclaimer

4 / 11

0X202408200006

Armors Labs Reports is not and should not be regarded as an "approval" or "disapproval" of any particular project or

team. These reports are not and should not be regarded as indicators of the economy or value of any "product" or

"asset" created by any team. Armors do not cover testing or auditing the integration with external contract or services

(such as Unicrypt, Uniswap, PancakeSwap etc’…)

Armors Labs Reports represent an extensive auditing process intending to help our customers increase the quality of

their code while reducing the high level of risk presented by cryptographic tokens and blockchain technology. Armors

does not guarantee the safety or functionality of the technology agreed to be analyzed.

Armors Labs postulates that the information provided is not missing, tampered, deleted or hidden. If the information

provided is missing, tampered, deleted, hidden or reflected in a way that is not consistent with the actual situation,

Armors Labs shall not be responsible for the losses and adverse effects caused. Armors Labs Audits should not be

used in any way to make decisions around investment or involvement with any particular project. These reports in no

way provide investment advice, nor should be leveraged as investment advice of any sort.

file md5

./auction/PreAuction.sol a54c3bf1db25be731e65d0dfa05a1f6e

./auction/libauction.sol e6848c156ea89bbd226f20f4ff7dd7af

./auction/Auction.sol 9f9928fa043207a63bd9dbf2d255776b

./Airdrop.sol cc67a7fbd938631245dddc76fa9af7d2

./InviteReward.sol 403ef3baf1d9494baf8de68ea4efb300

./deposites/deposit.sol d106adaf98ec21503a0f7a13e4442ae2

./deposites/IRFGDeposit.sol b438866e9daa34d3d62e35da795dd33d

./deposites/RFGDeposit.sol dd73fde605949308163e4da02a431ef2

./smspool/IStakingManager.sol 1d118418f770e114653603ffc683a946

./smspool/SinglePool.sol ff503500d5162f57c12006b1518c33f7

./smspool/StakingManager.sol ce590654eece326d5bfb5e4ab8626a19

./smspool/Pool.sol a28eee1f2c70eef0130b5eb94f641278

./smspool/CouplePool.sol a43deb61a16bd242a21d2eef4aaec862

./smspool/Commons.sol 7403324e8534d9891a4e43e9014b9386

./smspool/IPool.sol 8a24c4a60659baa409c0629bf6b52680

./smspool/GroupPool.sol 9fe09591a0411250b60b2c7b7816de01

./smspool/Reward.sol cb120bfa974037d157c950edea721472

./smspool/IRFGToken.sol 8231cd58e300ad5dfaa8586c330008a2

./SingleTokenStaking.sol 5556b43fe3da32a29ffe62d0b4120d2f

./tokens/RFGToken.sol 1b3fabffda59e6e5900857436c7f5816

./tokens/NftCard.sol 8b7b0f71377ecbf73158c8b193b46be4

Audited target file

5 / 11

0X202408200006

vulnerability level number

Critical severity 0

High severity 0

Medium severity 0

Low severity 0

Vulnerability status

Re-Entrancy safe

Arithmetic Over/Under Flows safe

Unexpected Blockchain Currency safe

Delegatecall safe

Default Visibilities safe

Entropy Illusion safe

External Contract Referencing safe

Short Address/Parameter Attack safe

Unchecked CALL Return Values safe

Race Conditions / Front Running safe

Denial Of Service (DOS) safe

Block Timestamp Manipulation safe

Constructors with Care safe

Unintialised Storage Pointers safe

Floating Points and Numerical Precision safe

tx.origin Authentication safe

Permission restrictions safe

./contracts
├── Airdrop.sol
├── InviteReward.sol
├── SingleTokenStaking.sol

Vulnerability analysis

Vulnerability distribution

Summary of audit results

Contract file

6 / 11

0X202408200006

├── auction
│ ├── Auction.sol
│ ├── PreAuction.sol
│ └── libauction.sol
├── deposites
│ ├── IRFGDeposit.sol
│ ├── RFGDeposit.sol
│ └── deposit.sol
├── smspool
│ ├── Commons.sol
│ ├── CouplePool.sol
│ ├── GroupPool.sol
│ ├── IPool.sol
│ ├── IRFGToken.sol
│ ├── IStakingManager.sol
│ ├── Pool.sol
│ ├── Reward.sol
│ ├── SinglePool.sol
│ └── StakingManager.sol
└── tokens
 ├── NftCard.sol
 └── RFGToken.sol

5 directories, 21 files

Description:
One of the features of smart contracts is the ability to call and utilise code of other external contracts. Contracts

also typically handle Blockchain Currency, and as such often send Blockchain Currency to various external user

addresses. The operation of calling external contracts, or sending Blockchain Currency to an address, requires

the contract to submit an external call. These external calls can be hijacked by attackers whereby they force the

contract to execute further code (i.e. through a fallback function) , including calls back into itself. Thus the code

execution "re-enters" the contract. Attacks of this kind were used in the infamous DAO hack.

Detection results:

PASSED!

Security suggestion:
no.

Description:
The Virtual Machine (EVM) specifies fixed-size data types for integers. This means that an integer variable, only

has a certain range of numbers it can represent. A uint8 for example, can only store numbers in the range

[0,255]. Trying to store 256 into a uint8 will result in 0. If care is not taken, variables in Solidity can be exploited if

user input is unchecked and calculations are performed which result in numbers that lie outside the range of the

data type that stores them.

Detection results:

PASSED!

Analysis of audit results

Re-Entrancy

Arithmetic Over/Under Flows

7 / 11

0X202408200006

Security suggestion:
no.

Description:
Typically when Blockchain Currency is sent to a contract, it must execute either the fallback function, or another

function described in the contract. There are two exceptions to this, where Blockchain Currency can exist in a

contract without having executed any code. Contracts which rely on code execution for every Blockchain

Currency sent to the contract can be vulnerable to attacks where Blockchain Currency is forcibly sent to a

contract.

Detection results:

PASSED!

Security suggestion: no.

Description:
The CALL and DELEGATECALL opcodes are useful in allowing developers to modularise their code. Standard

external message calls to contracts are handled by the CALL opcode whereby code is run in the context of the

external contract/function. The DELEGATECALL opcode is identical to the standard message call, except that

the code executed at the targeted address is run in the context of the calling contract along with the fact that

msg.sender and msg.value remain unchanged. This feature enables the implementation of libraries whereby

developers can create reusable code for future contracts.

Detection results:

PASSED!

Security suggestion: no.

Description:
Functions in Solidity have visibility specifiers which dictate how functions are allowed to be called. The visibility

determines whBlockchain Currency a function can be called externally by users, by other derived contracts, only

internally or only externally. There are four visibility specifiers, which are described in detail in the Solidity Docs.

Functions default to public allowing users to call them externally. Incorrect use of visibility specifiers can lead to

some devestating vulernabilities in smart contracts as will be discussed in this section.

Detection results:

PASSED!

Security suggestion:
no.

Unexpected Blockchain Currency

Delegatecall

Default Visibilities

Entropy Illusion

8 / 11

0X202408200006

Description:
All transactions on the blockchain are deterministic state transition operations. Meaning that every transaction

modifies the global state of the ecosystem and it does so in a calculable way with no uncertainty. This ultimately

means that inside the blockchain ecosystem there is no source of entropy or randomness. There is no rand()

function in Solidity. Achieving decentralised entropy (randomness) is a well established problem and many

ideas have been proposed to address this (see for example, RandDAO or using a chain of Hashes as described

by Vitalik in this post).

Detection results:

PASSED!

Security suggestion:
no.

Description:
One of the benefits of the global computer is the ability to re-use code and interact with contracts already

deployed on the network. As a result, a large number of contracts reference external contracts and in general

operation use external message calls to interact with these contracts. These external message calls can mask

malicious actors intentions in some non-obvious ways, which we will discuss.

Detection results:

PASSED!

Security suggestion:
no.

Description:
Check for Unsolved TODO comments

Detection results:

PASSED!

Security suggestion:
no.

Description:
This attack is not specifically performed on Solidity contracts themselves but on third party applications that may

interact with them. I add this attack for completeness and to be aware of how parameters can be manipulated in

contracts.

Detection results:

PASSED!

Security suggestion:
no.

External Contract Referencing

Unsolved TODO comments

Short Address/Parameter Attack

9 / 11

0X202408200006

Description:
There a number of ways of performing external calls in solidity. Sending Blockchain Currency to external

accounts is commonly performed via the transfer() method. However, the send() function can also be used and,

for more versatile external calls, the CALL opcode can be directly employed in solidity. The call() and send()

functions return a boolean indicating if the call succeeded or failed. Thus these functions have a simple caveat,

in that the transaction that executes these functions will not revert if the external call (intialised by call() or send())

fails, rather the call() or send() will simply return false. A common pitfall arises when the return value is not

checked, rather the developer expects a revert to occur.

Detection results:

PASSED!

Security suggestion:
no.

Description:
The combination of external calls to other contracts and the multi-user nature of the underlying blockchain gives

rise to a variety of potential Solidity pitfalls whereby users race code execution to obtain unexpected states. Re-

Entrancy is one example of such a race condition. In this section we will talk more generally about different kinds

of race conditions that can occur on the blockchain. There is a variety of good posts on this subject, a few are:

Wiki - Safety, DASP - Front-Running and the Consensus - Smart Contract Best Practices.

Detection results:

PASSED!

Security suggestion:
no.

Description:
This category is very broad, but fundamentally consists of attacks where users can leave the contract inoperable

for a small period of time, or in some cases, permanently. This can trap Blockchain Currency in these contracts

forever, as was the case with the Second Parity MultiSig hack

Detection results:

PASSED!

Security suggestion:
no.

Description:
Block timestamps have historically been used for a variety of applications, such as entropy for random numbers

(see the Entropy Illusion section for further details), locking funds for periods of time and various state-changing

Unchecked CALL Return Values

Race Conditions / Front Running

Denial Of Service (DOS)

Block Timestamp Manipulation

10 / 11

0X202408200006

conditional statements that are time-dependent. Miner's have the ability to adjust timestamps slightly which can

prove to be quite dangerous if block timestamps are used incorrectly in smart contracts.

Detection results:

PASSED!

Security suggestion:
no.

Description:
Constructors are special functions which often perform critical, privileged tasks when initialising contracts.

Before solidity v0.4.22 constructors were defined as functions that had the same name as the contract that

contained them. Thus, when a contract name gets changed in development, if the constructor name isn't

changed, it becomes a normal, callable function. As you can imagine, this can (and has) lead to some interesting

contract hacks.

Detection results:

PASSED!

Security suggestion:
no.

Description:
The EVM stores data either as storage or as memory. Understanding exactly how this is done and the default

types for local variables of functions is highly recommended when developing contracts. This is because it is

possible to produce vulnerable contracts by inappropriately intialising variables.

Detection results:

PASSED!

Security suggestion:
no.

Description:
As of this writing (Solidity v0.4.24), fixed point or floating point numbers are not supported. This means that

floating point representations must be made with the integer types in Solidity. This can lead to

errors/vulnerabilities if not implemented correctly.

Detection results:

PASSED!

Security suggestion:
no.

Constructors with Care

Unintialised Storage Pointers

Floating Points and Numerical Precision

tx.origin Authentication

11 / 11

0X202408200006

Description:
Solidity has a global variable, tx.origin which traverses the entire call stack and returns the address of the

account that originally sent the call (or transaction). Using this variable for authentication in smart contracts

leaves the contract vulnerable to a phishing-like attack.

Detection results:

PASSED!

Security suggestion:
no.

Description:
Contract managers who can control liquidity or pledge pools, etc., or impose unreasonable restrictions on other

users.

Detection results:

PASSED!

Security suggestion:
no.

Permission restrictions

