


Table Of Contents

1 Executive Summary

2 Audit Methodology

3 Project Overview

3.1 Project Introduction

3.2 Vulnerability Information

4 Code Overview

4.1 Contracts Description

4.2 Visibility Description

4.3 Vulnerability Summary

5 Audit Result

6 Statement



1 Executive Summary

On 2024.07.29, the SlowMist security team received the Match team's security audit application for Match,

developed the audit plan according to the agreement of both parties and the characteristics of the project, and finally

issued the security audit report.

The SlowMist security team adopts the strategy of "white box lead, black, grey box assists" to conduct a complete

security test on the project in the way closest to the real attack.

The test method information:

Test method Description

Black box testing Conduct security tests from an attacker's perspective externally.

Grey box testing
Conduct security testing on code modules through the scripting tool, observing the
internal running status, mining weaknesses.

White box
testing

Based on the open source code, non-open source code, to detect whether there are
vulnerabilities in programs such as nodes, SDK, etc.

The vulnerability severity level information:

Level Description

Critical
Critical severity vulnerabilities will have a significant impact on the security of the DeFi
project, and it is strongly recommended to fix the critical vulnerabilities.

High
High severity vulnerabilities will affect the normal operation of the DeFi project. It is
strongly recommended to fix high-risk vulnerabilities.

Medium
Medium severity vulnerability will affect the operation of the DeFi project. It is
recommended to fix medium-risk vulnerabilities.

Low
Low severity vulnerabilities may affect the operation of the DeFi project in certain
scenarios. It is suggested that the project team should evaluate and consider whether
these vulnerabilities need to be fixed.

Weakness There are safety risks theoretically, but it is extremely difficult to reproduce in engineering.

Suggestion There are better practices for coding or architecture.



2 Audit Methodology

The security audit process of SlowMist security team for smart contract includes two steps:

Following is the list of commonly known vulnerabilities that was considered during the audit of the smart contract:

Serial Number Audit Class Audit Subclass

1 Overflow Audit -

2 Reentrancy Attack Audit -

3 Replay Attack Audit -

4 Flashloan Attack Audit -

5 Race Conditions Audit Reordering Attack Audit

6 Permission Vulnerability Audit
Access Control Audit

Excessive Authority Audit

7 Security Design Audit

External Module Safe Use Audit

Compiler Version Security Audit

Hard-coded Address Security Audit

Fallback Function Safe Use Audit

Show Coding Security Audit

Function Return Value Security Audit

External Call Function Security Audit

Smart contract codes are scanned/tested for commonly known and more specific vulnerabilities using

automated analysis tools.

Manual audit of the codes for security issues. The contracts are manually analyzed to look for any potential

problems.



Serial Number Audit Class Audit Subclass

7 Security Design Audit
Block data Dependence Security Audit

tx.origin Authentication Security Audit

8 Denial of Service Audit -

9 Gas Optimization Audit -

10 Design Logic Audit -

11 Variable Coverage Vulnerability Audit -

12 "False Top-up" Vulnerability Audit -

13 Scoping and Declarations Audit -

14 Malicious Event Log Audit -

15 Arithmetic Accuracy Deviation Audit -

16 Uninitialized Storage Pointer Audit -

3 Project Overview

3.1 Project Introduction

Match is an innovative platform committed to breaking down barriers to value-creating social interactions. Based on

AI and bottom layer of the big data architecture, this platform leverages the wealth effect of meme coins to establish

an efficient value-creating social network. On this platform, projects are accurately matched with users based on

extensible social graphs, so that social interactions among users can be combined with wealth.

This is an audit of the contracts for the Match, which mainly includes the Auction, Deposits, Pool, Token, Airdrop, and

Token Staking modules. The Token module is primarily used for issuing NFTs and RFG tokens. It is important to note

that there is an upper limit on the token issuance; whitelisted users can claim token airdrops through the Airdrop

module; users can also stake specific assets in the Token Staking module to obtain RFG token rewards; the Auction

module allows users to participate in NFT auctions using USDC; users can also deposit RFG tokens in the Deposits



module, and while earning RFG token rewards, they can also increase their boost to improve their chances of

obtaining high-value NFTs when participating in auctions. Users can stake NFTs through the Pool module to earn

RFG token rewards.

3.2 Vulnerability Information

The following is the status of the vulnerabilities found in this audit:

NO Title Category Level Status

N1
Potentially unclaimed

rewards

Arithmetic
Accuracy Deviation

Vulnerability
Low Acknowledged

N2
Optimizable

refreshGlobalState
Gas Optimization

Audit
Suggestion Fixed

N3
Compatibility issues

with deflationary
tokens

Design Logic Audit Medium Acknowledged

N4
Optimizable RFG
token distribution

method
Design Logic Audit Suggestion Acknowledged

N5
Admin who has not

set the Boss role
Authority Control
Vulnerability Audit

Low Acknowledged

N6

Not checking the
reasonableness of

time when updating
auctions

Design Logic Audit High Fixed

N7
Smart contracts

cannot participate in
the auction

Design Logic Audit Information Acknowledged

N8
Time check when
closing auction is

flawed
Design Logic Audit Medium Fixed

N9
Not checking if the

user's bid is as
expected

Design Logic Audit Low Fixed

N10
Not checking if the

user's bid is
refundable

Design Logic Audit Low Fixed



NO Title Category Level Status

N11
Risk of pseudo-

randomness

Block data
Dependence
Vulnerability

Critical Fixed

N12

Redundant return
value of

adjustRandomtoken
function

Others Suggestion Acknowledged

N13
The tokenId obtained
by the user is related
to the NFT inventory

Design Logic Audit Information Acknowledged

N14
Unchecked boost
bound parameters
during initialization

Design Logic Audit Suggestion Fixed

N15
Rewards not settled

as expected
Design Logic Audit Critical Fixed

N16
Incorrect whitelist pool

check
Unsafe External

Call Audit
Critical Fixed

N17

When
totalStakedItem  is
0, the reward should

be returned directly as
0

Design Logic Audit Suggestion Fixed

N18
Unexpected rewards
when staking in pairs

Design Logic Audit Critical Fixed

N19

Manipulate boost to
influence the token id

obtained in the
auction

Design Logic Audit Medium Acknowledged

N20
Redundant PoolMax

enum
Others Suggestion Fixed

N21

Reward calculation for
two stakers in

GroupPool being the
same user

Design Logic Audit Information Acknowledged

N22

Potentially incorrect
social staking reward

information in
GroupPool

Design Logic Audit Low Fixed

N23
Potential Denial of

Service Risk
Denial of Service

Vulnerability
Low Acknowledged



NO Title Category Level Status

N24

The validity of the pid
was not checked
when creating the

pool

Design Logic Audit Suggestion Fixed

N25

When creating a
matchCode, it does

not check whether the
pool has been

created.

Design Logic Audit Suggestion Fixed

N26
There is an upper limit
on the matchCodes
available in the pool

Design Logic Audit Suggestion Fixed

N27

Checks-Effects-
Interactions are not

followed when
transferring out NFT

Design Logic Audit Suggestion Confirmed

N28
Optimizable reward
information update

Gas Optimization
Audit

Suggestion Fixed

N29
Risks of excessive

privilege
Authority Control
Vulnerability Audit

Medium Acknowledged

N30
Protocol Missing

Emergency
Operations Role

Authority Control
Vulnerability Audit

Suggestion Fixed

N31 Missing event records Others Suggestion Fixed

4 Code Overview

4.1 Contracts Description

Audit Version:

https://github.com/socialmatch/ssm-contract

commit: 8d2ca560d31ffff27b0d2281a87c7a63f7fdafb6

Fixed Version:

https://github.com/socialmatch/ssm-contract



commit: dc3b2f4aa105a7bad197194c58e3e5cafbb0357d

Audit Scope:

The main network address of the contract is as follows:

The code was not deployed to the mainnet.

4.2 Visibility Description

The SlowMist Security team analyzed the visibility of major contracts during the audit, the result as follows:

Airdrop

Function Name Visibility Mutability Modifiers

<Constructor> Public Can Modify State Ownable EIP712

<Receive Ether> External Payable -

withdrawToken External Can Modify State onlyOwner

setRfgToken External Can Modify State onlyOwner

setSigner External Can Modify State onlyOwner

claimAirdrop External Can Modify State -

InviteReward

Function Name Visibility Mutability Modifiers

contracts/Airdrop.sol

contracts/SingleTokenStaking.sol

contracts/auction/Auction.sol

contracts/auction/libauction.sol

contracts/deposites/*.sol

contracts/smspool/*.sol

contracts/tokens/*.sol



InviteReward

<Constructor> Public Can Modify State Ownable EIP712

<Receive Ether> External Payable -

withdrawToken External Can Modify State onlyOwner

setRfgToken External Can Modify State onlyOwner

setSigner External Can Modify State onlyOwner

claimReward External Can Modify State -

SingleTokenStaking

Function Name Visibility Mutability Modifiers

<Constructor> Public Can Modify State Ownable

initialize External Can Modify State initializer

_authorizeUpgrade Internal Can Modify State onlyOwner

resetRewardSpeed External Can Modify State onlyOwner

refreshGlobalState Internal Can Modify State -

addDeposit Internal Can Modify State -

subDesposit Internal Can Modify State -

deposit External Can Modify State -

withdraw External Can Modify State -

claimReward External Can Modify State -

getPendingReward External - -

NftCard

Function Name Visibility Mutability Modifiers



NftCard

<Constructor> Public Can Modify State ERC1155 Ownable

setMinter External Can Modify State onlyOwner

initIssue External Can Modify State onlyOwner

mint External Can Modify State onlyMinter

setUri External Can Modify State onlyOwner

uri Public - -

RFGToken

Function Name Visibility Mutability Modifiers

<Constructor> Public Can Modify State ERC20 Ownable

setMinter External Can Modify State onlyOwner

claimAirdrop External Can Modify State onlyOwner

claimLiquidity External Can Modify State onlyOwner

mint External Can Modify State onlyMinters

Auction

Function Name Visibility Mutability Modifiers

<Constructor> Public Can Modify State -

initialize External Can Modify State initializer

_authorizeUpgrade Internal Can Modify State onlyRole

setMaxBidableTimes External Can Modify State onlyRole

setOperator External Can Modify State onlyRole

createAuction External Can Modify State onlyRole



Auction

updateAuction External Can Modify State onlyRole

bidAuction External Can Modify State -

finishAuction External Can Modify State onlyRole

claimNft External Can Modify State -

refund External Can Modify State -

withdraw External Can Modify State onlyRole

transferUsdtIn Internal Can Modify State -

transferUsdtOut Internal Can Modify State -

doMintNft Internal Can Modify State -

doMintOneNft Internal Can Modify State -

fakeRandomToken Internal - -

adjustRandomtoken Internal Can Modify State -

RFGDeposit

Function Name Visibility Mutability Modifiers

<Constructor> Public Can Modify State Ownable

initialize External Can Modify State initializer

_authorizeUpgrade Internal Can Modify State onlyOwner

stopFixedPool External Can Modify State onlyOwner

setFlexibleRewardSpeed External Can Modify State onlyOwner

setStakingManager External Can Modify State onlyOwner

getDepositBoost External - -

updateBoostApy Internal Can Modify State -



RFGDeposit

calculateBoost Internal - -

updateFlexibleBoost Internal Can Modify State -

recalculateBoostApy Internal Can Modify State -

flexibleDeposit External Can Modify State -

flexibleWithdraw External Can Modify State -

claimFlexibleReward External Can Modify State -

createFixedDeposit External Can Modify State onlyOwner

fixedDeposit External Can Modify State -

setAutoRedeposit External Can Modify State -

fixedWithdraw External Can Modify State -

transferRFGIn Internal Can Modify State -

transferRFGOut Internal Can Modify State -

mintReward Internal Can Modify State -

getPendingFlexibleReward External - -

getJoinedFixedDeposit External - -

estimateBoost External - -

Pool

Function Name Visibility Mutability Modifiers

implementation External - -

_authorizeUpgrade Internal Can Modify State onlyManager

setRewardSpeed External Can Modify State onlyManager

nextMatchCode External Can Modify State onlyManager



Pool

getNextMatchCode External - -

getPool Internal - -

assertCallerIsPool Internal - -

selfStake External Can Modify State onlyManager

selfUnstake External Can Modify State onlyManager

calculateStakeReward Internal - -

claimSelfStakeReward Public Can Modify State onlyManager

getSelfStakePendingReward Public - -

claimAllCustodialReward Public Can Modify State -

claimCustodialReward Public Can Modify State -

claimAllSocialReward Public Can Modify State -

claimSocialReward Public Can Modify State -

socialStake External Can Modify State -

cancelSocialStake External Can Modify State -

socialUnstake External Can Modify State -

forceSocialUnstake External Can Modify State -

custodialNft1 External Can Modify State -

uncustodialNft1 External Can Modify State -

custodialNft2 External Can Modify State -

uncustodialNft2 External Can Modify State -

getAllCustodialPendingReward Public - -

getCustodialPendingReward Public - -



Pool

getAllSocialPendingReward Public - -

getSocialPendingReward Public - -

SinglePool

Function Name Visibility Mutability Modifiers

<Constructor> Public Can Modify State -

initialize Public Can Modify State initializer

custodialNft1 Public Can Modify State -

uncustodialNft1 Public Can Modify State -

updateCustodialInfo Internal Can Modify State -

claimAllReward Public Can Modify State onlyManager

claimAllCustodialReward Public Can Modify State onlyManager

claimCustodialReward Public Can Modify State onlyManager

getPendingReward External - -

getAllCustodialPendingReward Public - -

getCustodialPendingReward Public - -

getCustodialMatchCodes External - -

StakingManager

Function Name Visibility Mutability Modifiers

<Constructor> Public Can Modify State -

_authorizeUpgrade Internal Can Modify State onlyRole

initialize Public Can Modify State initializer



StakingManager

upgradePool External Can Modify State onlyRole

createPool External Can Modify State onlyRole

selfStake External Can Modify State onlyValidPool

selfUnstake External Can Modify State onlyValidPool

createMatch2Code External Can Modify State -

createMatch3Code External Can Modify State -

stakeNft Internal Can Modify State -

socialStake External Can Modify State -

cancelSocialStake External Can Modify State -

applySocialUnstake External Can Modify State -

agreeSocialUnstake External Can Modify State -

forceSocialUnstake External Can Modify State -

claimAllSocialReward External Can Modify State -

claimSocialReward Public Can Modify State -

claimAllCustodialReward External Can Modify State -

claimCustodialReward External Can Modify State -

claimSelfStakeReward External Can Modify State -

claimPoolReward External Can Modify State -

claimAllPoolReward External Can Modify State -

getAllPendingRewards External - -

getMatchInfo External - -

onERC1155Received External - -



StakingManager

returnNftsBackAndClaimReward Internal Can Modify State -

transferInNft Internal Can Modify State -

transferOutNft Internal Can Modify State -

mintCustodialReward Internal Can Modify State -

doMintRFGWithBoost Internal Can Modify State -

pid2tokens Internal - -

CouplePool

Function Name Visibility Mutability Modifiers

<Constructor> Public Can Modify State -

initialize External Can Modify State initializer

socialStake External Can Modify State onlyManager

cancelSocialStake External Can Modify State onlyManager

socialUnstake External Can Modify State onlyManager

forceSocialUnstake External Can Modify State onlyManager

custodialNft2 Public Can Modify State -

uncustodialNft2 Public Can Modify State -

updateCustodialInfo Internal Can Modify State -

updateSocialStakeRewardInfo Internal Can Modify State -

updateCustodialRewardInfo Internal Can Modify State -

claimAllReward External Can Modify State onlyManager

claimAllCustodialReward Public Can Modify State onlyManager

claimCustodialReward Public Can Modify State onlyManager



CouplePool

claimAllSocialReward Public Can Modify State onlyManager

claimSocialReward Public Can Modify State onlyManager

viewSocialStakeRewardInfo Internal - -

viewCustodialRewardInfo Internal - -

getPendingReward External - -

getAllSocialPendingReward Public - -

getSocialPendingReward Public - -

getAllCustodialPendingReward Public - -

getCustodialPendingReward Public - -

getCustodialMatchCodes External - -

getJoinedMatchCodes External - -

GroupPool

Function Name Visibility Mutability Modifiers

<Constructor> Public Can Modify State -

initialize External Can Modify State initializer

socialStake External Can Modify State onlyManager

cancelSocialStake External Can Modify State onlyManager

socialUnstake External Can Modify State onlyManager

forceSocialUnstake External Can Modify State onlyManager

updateRewardInfo Internal Can Modify State -

claimAllReward External Can Modify State onlyManager

claimAllSocialReward Public Can Modify State onlyManager



GroupPool

claimSocialReward Public Can Modify State onlyManager

viewSocialStakeRewardInfo Internal - -

getPendingReward External - -

getAllSocialPendingReward Public - -

getSocialPendingReward Public - -

getJoinedMatchCodes External - -

4.3 Vulnerability Summary

[N1] [Low] Potentially unclaimed rewards

Category: Arithmetic Accuracy Deviation Vulnerability

Content

In the SingleTokenStaking contract, the calculation of staking rewards mainly depends on the rewardSpeed variable.

The contract calculates the global reward accumulation accuedReward based on rewardSpeed and the block

interval. When a user settles rewards, the difference between the current global accuedReward and the user's last

settled accuedReward is multiplied by the user's deposit amount to determine the user's claimable rewards. It is

important to note that the contract does not limit users' minimum deposit amount. This means that when a user

deposits an extremely small amount and rewardSpeed is set relatively low (for example, if the user deposits 1 wei

and rewardSpeed is less than 1e18), the user's small rewards may be truncated due to decimal rounding during the

reward settlement process. This may result in the user's rewards being left unclaimed in the contract.

Code location:

contracts/SingleTokenStaking.sol#L79

contracts/SingleTokenStaking.sol#L149

    function refreshGlobalState() internal {

        DepositConfig memory config = gDeposits;

        if (config.totalDeposited != 0) {

            config.accuedReward += (block.number - config.accuedBlock) * 



config.rewardSpeed * DivPrecision / config.totalDeposited;

        }

        ...

    }

    function claimReward() external {

        ...

        uint256 reward = (gDeposits.accuedReward - userDeposit.accuedReward) * 

userDeposit.amount / DivPrecision;

        ...

    }

Solution

It is recommended that the minimum deposit amount be limited for users or that the value of rewardSpeed be

carefully considered when setting it.

Status

Acknowledged

[N2] [Suggestion] Optimizable refreshGlobalState

Category: Gas Optimization Audit

Content

In the SingleTokenStaking contract, the refreshGlobalState function is used to update the global reward state

accuedReward and update the accumulated rewards and the current block to the corresponding global variables. It

is important to note that there may be a large number of users performing operations such as depositing,

withdrawing, and claiming rewards within the same block, which will result in frequent calls to the refreshGlobalState

function. This means that although accuedReward will not be accumulated within the same block, users still need to

pay some gas to update gDeposits.accuedReward  and gDeposits.accuedBlock , which is unnecessary within

the same block.

Code location: contracts/SingleTokenStaking.sol#L79

    function refreshGlobalState() internal {

        DepositConfig memory config = gDeposits;

        if (config.totalDeposited != 0) {

            config.accuedReward += (block.number - config.accuedBlock) * 

config.rewardSpeed * DivPrecision / config.totalDeposited;

        }



        gDeposits.accuedReward = config.accuedReward;

        gDeposits.accuedBlock = block.number;

    }

Solution

It is recommended to check in refreshGlobalState whether gDeposits.accuedBlock  is equal to the current block,

and if it is, directly return to save gas.

Status

Fixed

[N3] [Medium] Compatibility issues with deflationary tokens

Category: Design Logic Audit

Content

In the SingleTokenStaking contract, users can deposit supported tokens into the contract using the deposit function,

and the addDeposit function directly records the amount of deposit tokens passed in by the user. If the token

supported by the contract is deflationary, the contract will actually receive fewer tokens than the deposit amount

passed in by the user. This will cause the contract to record a higher user deposit than the actual amount of tokens

received. When the user withdraws, it will result in a bad debt for the protocol.

Code location: contracts/SingleTokenStaking.sol#L118

    function deposit(uint256 amount) external {

        require(amount != 0, "invalid amount");

        SafeERC20.safeTransferFrom(IERC20(gDeposits.tokenAddress), msg.sender, 

address(this), amount);

        ...

    }

Solution

If the SingleTokenStaking contract supports the deposit of deflationary tokens, then the difference between the

contract balance before and after the user's deposit should be recorded as the user's actual deposit amount.

Status



Acknowledged; After communicating with the project team, the project team stated that the protocol will not support

any deflationary tokens.

[N4] [Suggestion] Optimizable RFG token distribution method

Category: Design Logic Audit

Content

In the RFGToken contract, the token distribution rules are hardcoded. 30% of the token supply will be allocated to

liquidity, 10% will be allocated to airdrops, and the remaining tokens will be minted by the minter role. The contract

uses three separate functions to mint tokens for these three different allocation purposes. However, it should be

noted that in the claimAirdrop and claimLiquidity functions, although the tokens are minted for airdrop and liquidity

purposes, the receiving addresses are not specified. The owner role can mint these tokens to any address.

Code location: contracts/tokens/RFGToken.sol#L38-L56

    function claimAirdrop(address to, uint256 value) external onlyOwner {

        ...

        _mint(to, value);

        emit Airdroped(to, value);

    }

    function claimLiquidity(address to, uint256 value) external onlyOwner {

        ...

        _mint(to, value);

        emit LiquidityClaimed(to, value);

    }

Solution

If the token contract has already clearly specified the airdrop contract and liquidity receiving addresses at the time of

deployment, it is recommended to mint these tokens to fixed addresses to enhance community trust.

Status

Acknowledged

[N5] [Low] Admin who has not set the Boss role



Category: Authority Control Vulnerability Audit

Content

During the initialization of the Auction contract, the specified boss address is granted the BossRole. However, it

should be noted that the BossRole is not assigned the AdminRole. This means that if the boss address experiences

issues such as private key leakage, the protocol will not be able to handle the boss address through

revokeRole/grantRole .

Code location: contracts/auction/Auction.sol#L93

    function initialize(

        string memory name,

        string memory version,

        address admin,

        address nftCard,

        address[] calldata operators,

        address boss,

        address rfgDeposit

    )

        external

        initializer

    {

        ...

        _grantRole(BossRole, boss);

        ...

    }

Solution

If this is not an intended design, it is recommended to set the AdminRole for the BossRole during contract

initialization.

Status

Acknowledged; After communicating with the project team, the project team stated that once the boss role is set, it

will not be modified again, and the boss role is managed by a multisig wallet.

[N6] [High] Not checking the reasonableness of time when updating auctions

Category: Design Logic Audit

Content



In the Auction contract, the admin role can update existing auction configurations through the updateAuction

function. When updating, it checks whether the new startPrice is greater than 0, but it does not check whether the

new endTime is greater than startTime. It should be noted that the admin can update an auction that has already

ended to reopen it. This means that users who have already placed bids or claimed items can participate in the

auction again. However, this will cause the restarted auction to conflict with the previous claim/refund data. For

example, if a user who successfully claimed an NFT in the previous auction wins the auction again, they will not be

able to claim the new NFT successfully a second time. This does not align with the expected design.

Code location: contracts/auction/Auction.sol#L128-L135

    function updateAuction(uint8 aucId, AuctionSetting calldata auction) external 

onlyRole(AdminRole) {

        require(auctions[aucId].endTime > 0, "auction not exist");

        require(auction.startPrice > 0, "invalid price");

        auctions[aucId] = auction;

        emit AuctionUpdated(aucId, auction);

    }

Solution

It is recommended to only allow updating auction configurations that are still within the auction cycle and to check

that the new endTime must be greater than startTime.

Status

Fixed

[N7] [Information] Smart contracts cannot participate in the auction

Category: Design Logic Audit

Content

In the Auction contract, users can participate in the auction through the bidAuction function. However, the function

checks whether msg.sender  is equal to tx.origin , which prevents smart contracts (including EIP4337 wallets)

from participating in the auction. It should be noted that in the future, if the EIP3074 standard is approved, it may

break this check.



Code location: contracts/auction/Auction.sol#L156

    function bidAuction(uint8 aucId, uint256 usdtAmount, bytes memory signature) 

external {

        ...

        require(tx.origin == msg.sender, "not for contract");

        ...

    }

Solution

N/A

Status

Acknowledged

[N8] [Medium] Time check when closing auction is flawed

Category: Design Logic Audit

Content

In the Auction contract, the operator can end the auction through the finishAuction function after the endTime. When

performing the finishAuction operation, the endTime is checked using block.timestamp >= auction.endTime ,

while when performing the bidAuction operation, the endTime is checked using block.timestamp <=

auction.endTime . This means that when the operator performs the finishAuction operation to set result.price

exactly at the endTime, users can still perform the bidAuction operation to participate in the auction. This may not

align with the intended design. It may also cause confusion for users, as they can place a bid higher than

result.price  at the endTime but are not included in the final Merkle tree.

Code location: contracts/auction/Auction.sol#L177

    function bidAuction(uint8 aucId, uint256 usdtAmount, bytes memory signature) 

external {

        ...

        require(

            block.timestamp <= auction.endTime,

            "already finished"

        );

        ...

    }



    function finishAuction(uint8 aucId, bytes32 merkleRoot, uint256 totalSold, 

uint256 price) external onlyRole(OperatorRole) {

        ...

        require(block.timestamp >= auction.endTime, "auction not finished");

        ...

    }

Solution

It is recommended to check that the current time must be greater than auction.endTime  and cannot be equal to it

when performing the finishAuction operation.

Status

Fixed

[N9] [Low] Not checking if the user's bid is as expected

Category: Design Logic Audit

Content

In the Auction contract, users who successfully win the auction can obtain the NFT through the claimNft function.

The operator sets the Merkle proof to verify the validity of the claiming user. When the user's bid price is higher than

auctionResult.price , the contract processes a refund for them. However, the contract does not check whether

the user's bid price is necessarily greater than or equal to auctionResult.price . If the Merkle tree erroneously

includes users with bid prices lower than auctionResult.price , it may result in insufficient funds in the contract

for the boss role to withdraw.

Code location: contracts/auction/Auction.sol#L189

    function claimNft(uint8 aucId, uint256 nftAmount, uint256 seed, bytes32[] memory 

proof) external {

        AuctionResult memory auctionResult = auctionResults[aucId];

        require(auctionResult.price > 0, "auction not finished");

        require(nftAmount == 1 || nftAmount == 2, "invalid nft amount");

        require(!claimedNfts[aucId][msg.sender], "have claimed");

        require(refunds[aucId][msg.sender] == 0, "have refunded");

        ...

    }



Solution

It is recommended to check in the claimNft function that the user's bid price must be greater than

auctionResult.price .

Status

Fixed

[N10] [Low] Not checking if the user's bid is refundable

Category: Design Logic Audit

Content

In the Auction contract, users who meet the refund conditions can use the operator's signature to request a refund.

Theoretically, if a user is eligible to claim the NFT, the operator will not sign for them to avoid giving up their eligibility

for a refund. However, the refund function does not strictly check whether the bid prices of all refunding users are

less than auctionResult.price . If the operator erroneously signs a refund for a user who is eligible to claim the

NFT, it will prevent the boss from withdrawing the remaining auction proceeds.

Code location: contracts/auction/Auction.sol#L214

    function refund(uint8 aucId, bytes memory signature) external {

        AuctionResult memory auctionResult = auctionResults[aucId];

        require(auctionResult.price > 0, "auction not finished");

        uint256 refundAmount = bids[aucId][msg.sender];

        require(refundAmount > 0, "not bid");

        require(!claimedNfts[aucId][msg.sender], "have claimed");

        require(refunds[aucId][msg.sender] == 0, "have refunded");

        ...

    }

Solution

It is recommended to strictly check that the user's bid price must be less than auctionResult.price  when

performing the refund operation.

Status

Fixed



[N11] [Critical] Risk of pseudo-randomness

Category: Block data Dependence Vulnerability

Content

In the Auction contract, when a user claims an NFT, the fakeRandomToken function is used to calculate the tokenId

for the user. The fakeRandomToken function uses block.prevrandao , block.number , and the user-provided

seed for calculation. Unfortunately, these parameters can be controlled or are already known. This allows malicious

users to ensure that the tokenIds of the NFTs they obtain at specific blocks are all of high value.

Code location: contracts/auction/Auction.sol#L297

function fakeRandomToken(address to, uint256 seed) internal view returns(uint8) {

        ...

        uint256 n = uint256(keccak256(abi.encode(block.prevrandao, block.number, 

seed)));

        uint256 v = n % 100;

        if (v <= tokenARange) { // init 50%

            return TokenA;

        } else if (v <= tokenBRange) { //init 30%

            return TokenB;

        } else {

            return TokenC; // init 20%

        }

    }

Solution

Using Chainlink VRF is the best practice for using random numbers on-chain, but it comes with a higher cost.

Another feasible solution is to determine a future block (e.g., 4 epochs ahead) when ending the auction. When that

block is reached, block.prevrandao  is obtained as a fixed seed. When a user claims an NFT, the fixed

block.prevrandao  and msg.sender  are used to calculate the tokenId. Since msg.sender  is already fixed at

the end of the auction, and block.prevrandao  is from a designated future block, it can better satisfy the

randomness requirement.

Status

Fixed; The current mitigation solution involves the project team selecting any block 10 minutes after the auction ends



and using block.prevrandao  as the random number seed to alleviate the aforementioned risk. It is important to

note that this solution still leads to an excessive privilege risk.

[N12] [Suggestion] Redundant return value of adjustRandomtoken function

Category: Others

Content

In the Auction contract, the adjustRandomtoken function is used to select a matching id for the user based on the

current tokenId inventory. When all the inventory has been claimed, the function directly throws an error using

require(false) . This makes the final return 0  redundant because the function will never execute this return

statement.

Code location: contracts/auction/Auction.sol#L333

    function adjustRandomtoken(uint8 aucId, uint8 token) internal returns(uint8) {

        ...

        require(false, "no token to claim");

        return 0;

    }

Solution

It is recommended to remove the redundant return 0 .

Status

Acknowledged

[N13] [Information] The tokenId obtained by the user is related to the NFT inventory

Category: Design Logic Audit

Content

In the Auction contract, the adjustRandomtoken function is used to adjust the final tokenId based on the inventory of

each tokenId's NFTs. If a user obtains the highest-value NFT but there is no inventory for this NFT, they may be

assigned the lowest-value NFT instead, and vice versa.

Code location: contracts/auction/Auction.sol#L308-L334



 function adjustRandomtoken(uint8 aucId, uint8 token) internal returns(uint8) {

        AuctionSetting memory auction = auctions[aucId];

        AuctionResult memory auctionResult = auctionResults[aucId];

        uint8 guardToken = token;

        do {

            if (token == TokenA && auctionResult.tokenAClaimed < auction.tokenAAmount) 

{

                auctionResults[aucId].tokenAClaimed += 1;

                return TokenA;

            }

            if (token == TokenB && auctionResult.tokenBClaimed < auction.tokenBAmount) 

{

                auctionResults[aucId].tokenBClaimed += 1;

                return TokenB;

            }

            if (token == TokenC && auctionResult.tokenCClaimed < auction.tokenCAmount) 

{

                auctionResults[aucId].tokenCClaimed += 1;

                return TokenC;

            }

            token = (token << 1) % 7;

        } while (token != guardToken);

        require(false, "no token to claim");

        return 0;

    }

Solution

N/A

Status

Acknowledged; The project team said this was the intended design.

[N14] [Suggestion] Unchecked boost bound parameters during initialization

Category: Design Logic Audit

Content

In the initialize function of the RFGDeposit contract, when the proxy contract is initialized, parameters such as

lowerBound and upperBound are passed in. However, the function does not check whether the passed-in



lowerBound is less than upperBound. Incorrectly passing the corresponding values may cause the protocol to be

unusable.

Code location: contracts/deposites/RFGDeposit.sol#L59-L60

    function initialize(

        address owner,

        address rfgToken,

        uint256 flexibleRewardSpeed,

        uint256 lowerBound,

        uint256 upperBound,

        uint256 factor

    )

        external

        initializer

    {

        ...

    }

Solution

It is recommended to check whether lowerBound is less than upperBound during initialization.

Status

Fixed

[N15] [Critical] Rewards not settled as expected

Category: Design Logic Audit

Content

In the RFGDeposit contract, users can make fixed-term deposits through the fixedDeposit function. When a user's

autoRedeposit status is false, even if the user's deposit time is several times longer than the duration, only one cycle

of rewards will be settled for the user. Unfortunately, the fixedDeposit function does not handle the case where

autoRedeposit is false. This allows users with autoRedeposit set to false to make a small deposit to the same fixId

after a long deposit period and still receive the full rewards, not just for one duration.

Code location: contracts/deposites/RFGDeposit.sol#L275

function fixedDeposit(uint64 fixId, uint256 amount, bool autoRedeposit) external {

        ...



        if (fDeposit.startTime == 0) {

            ...

        } else {

            fDeposit.pendingReward  += fDeposit.apy * (block.timestamp - 

fDeposit.startTime) * fDeposit.amount / (365 days * DivPrecision);

            fDeposit.amount         += amount;

            fDeposit.startTime      = block.timestamp;

            fDeposit.autoRedeposit  = autoRedeposit;

        }

        ...

    }

Solution

It is recommended to check the user's previous autoRedeposit status when making a fixed-term deposit to calculate

the rewards accordingly.

Status

Fixed

[N16] [Critical] Incorrect whitelist pool check

Category: Unsafe External Call Audit

Content

In the Pool contract, the assertCallerIsPool function is used to check whether the passed-in sender is a pool created

in the stakingManager. The assertCallerIsPool function receives the msg.sender  from SinglePool and CouplePool

as a possible pool address, calls the poolID interface of msg.sender  to obtain the pool id, and finally checks

whether this pool id is valid in the stakingManager. Unfortunately, this check method is not effective. Malicious

contracts can also implement the poolID interface and return a valid pool id (1~7) when called. Since the

assertCallerIsPool function only checks whether the id is valid through the stakingManager contract, malicious

contracts can easily bypass this check to perform malicious custodial staking and eventually exhaust the protocol's

assets.

Code location: contracts/smspool/Pool.sol#L61-L63

    function assertCallerIsPool(address sender) internal view returns(PoolID) {

        PoolID fromPoolID = IPool(sender).poolID();

        require(

            IStakingManager(stakingManager).pools(fromPoolID) != address(0),



            "from pool not exist"

        );

        return fromPoolID;

    }

Solution

It is recommended to add a poolList in the stakingManager contract to store newly created pools. The

assertCallerIsPool function should check whether msg.sender  is in the poolList of the stakingManager contract to

determine if it is a valid pool.

Status

Fixed

[N17] [Suggestion] When totalStakedItem  is 0, the reward should be returned directly as 0

Category: Design Logic Audit

Content

In the Pool contract, the getSelfStakePendingReward function is used to query the amount of rewards a staker can

currently receive. Theoretically, when the contract's totalStakedItem is 0, no user should be able to receive rewards.

However, the getSelfStakePendingReward function still calculates rewards when totalStakedItem is 0, which is not as

expected.

The same is true for the getSocialPendingReward/getCustodialPendingReward functions in the CouplePool and

GroupPool contracts.

Code location: contracts/smspool/Pool.sol#L122

function getSelfStakePendingReward(address staker) public view override 

returns(uint256) {

        if (selfStakeInfos[staker].amount == 0) return 0;

        Reward.Info memory gr = gRewardInfo;

        uint256 gAccu = gr.totalStakedItem == 0 ?

                gr.accuedReward :

                gr.accuedReward + (block.number - gr.accuedToBlock) * 

gr.rewardPerBlock / gr.totalStakedItem;

        ...

    }



contracts/smspool/CouplePool.sol#L421,L444

function getSocialPendingReward(address staker, uint256 matchCode) public view 

override returns(uint256) {

        ...

        uint256 gAccu = gr.totalStakedItem == 0 ?

        ...

    }

    function getCustodialPendingReward(address staker, uint256 matchCode) public view 

override returns(uint256) {

        ...

        uint256 gAccu = gr.totalStakedItem == 0 ?

        ...

    }

contracts/smspool/GroupPool.sol#L325

function getSocialPendingReward(address staker, uint256 matchCode) public view 

override returns(uint256) {

        ...

        uint256 gAccu = gr.totalStakedItem == 0 ?

        ...

    }

Solution

It is recommended to check when selfStakeInfos[staker].amount  or totalStakedItem  is 0 and directly

return 0 rewards in both cases.

Status

Fixed

[N18] [Critical] Unexpected rewards when staking in pairs

Category: Design Logic Audit

Content

In the CouplePool contract, the stakingManager can stake a user's NFT through the socialStake function. When the

staking has not been paired yet, CouplePool will custody the user's NFT to SinglePool to obtain SinglePool staking

rewards. Once the pairing is complete, it will withdraw from SinglePool and stake in CouplePool. Theoretically, during



the process of pairing, users should only receive rewards from SinglePool and not from CouplePool. Unfortunately,

when SinglePool custody is performed, the user's ssInfo.stakeInfo.amount  value in the CouplePool contract

will be updated to the staked amount. This allows users to claim CouplePool staking rewards through the

claimSocialReward function of the stakingManager contract even before the pairing is completed. Worse still, the

user's ssInfo.stakeInfo.claimedToAccued  has not been set at this point, so when settling rewards,

calculateStakeReward  will distribute large unexpected rewards to the user. Malicious users can exploit this issue

to exhaust all reward tokens.

Similarly, this issue also exists in the GroupPool contract. Users can still claim large rewards from GroupPool even

before the three-party pairing is completed.

Code location:

contracts/smspool/CouplePool.sol#L86

contracts/smspool/CouplePool.sol#L299

contracts/smspool/Pool.sol#L101

contracts/smspool/GroupPool.sol#L65

 function socialStake(uint256 matchCode, address staker, uint8 nftId, uint256 amount)

        external

        override

        onlyManager

        returns(CustodialReward[2] memory custodialRewards)

    {

        SocialStakeInfo2 storage ssInfo = socialStakeInfos[matchCode];

        if (ssInfo.nftId1 == NftID.InvalidToken) {

            ssInfo.staker1 = staker;

            ssInfo.nftId1  = nftId;

            ssInfo.stakeInfo.amount = amount;

            ...

        }

    }

    function updateCustodialRewardInfo(uint256 matchCode) internal {

        CustodialInfo2 memory cusInfo = custodialInfos[matchCode];

        uint256 pendingReward = calculateStakeReward(cusInfo.stakeInfo);

        ...

    }

    function calculateStakeReward(StakeInfo memory stakeInfo) internal view 



returns(uint256) {

        if (stakeInfo.amount == 0) return 0;

        uint256 deltaAccuReward = gRewardInfo.accuedReward - 

stakeInfo.claimedToAccued;

        uint256 rewardAmount    = deltaAccuReward * stakeInfo.amount;

        return rewardAmount;

    }

Solution

It is recommended not to set the user's ssInfo.stakeInfo.amount  value when the pairing has not been

completed.

Status

Fixed

[N19] [Medium] Manipulate boost to influence the token id obtained in the auction

Category: Design Logic Audit

Content

In the Auction contract, when a user claims the auctioned NFT, the token id of the NFT depends not only on the

random number seed but also on the amount of the user's deposit in the RFGDeposit contract. The larger the user's

deposit amount, the greater the user's boost, and the higher the probability of obtaining a high-value NFT.

Unfortunately, the calculation of the boost only depends on the user's deposit amount. Users can increase their RFG

deposit before claiming the NFT to improve the probability. When multiple addresses of a user have obtained NFTs,

they only need to withdraw the staked RFG tokens from other addresses and transfer them to the address that needs

to claim the NFT for staking before claiming the NFT, in order to increase the probability. In other words, users only

need a high amount of staking and can continuously stake/unstake/transfer RFG tokens to increase the probability of

obtaining high-value NFTs at a lower cost.

Code location:

contracts/auction/Auction.sol#L290

 function fakeRandomToken(address to, uint256 seed) internal view returns(uint8) {

        // range of boost is [1E18, 2E18]

        uint256 boost = IRFGDeposit(rfgDepositAddress).getDepositBoost(to);



        uint256 adjustBoost = (boost - 1E18) * 10; // enlarge 10 times of raw boost

        uint256 enlarge = adjustBoost * 30 / 1E18;

        enlarge = enlarge > 30 ? 30 : enlarge;

        uint256 tokenARange = 50 - enlarge;

        uint256 tokenBRange = 80 - enlarge;

        ...

    }

contracts/deposites/RFGDeposit.sol#L122

function calculateBoost(

        uint256 amount,

        uint256 lowerbound,

        uint256 upperbound,

        uint256 factor

    ) internal pure returns(uint256) {

        uint256 boost;

        if (amount <= lowerbound) {

            boost = 1E18;

        } else if (amount >= upperbound) {

            boost = 2E18;

        } else {

            boost = 1E18 + (amount - lowerbound) * factor / (upperbound - lowerbound);

            boost = boost > 2E18 ? 2E18 : boost;

        }

        return boost;

    }

Solution

It is recommended that when calculating the boost, the user's staking time should be taken into consideration. A

lower-cost solution is to snapshot the boost of each eligible user off-chain and use it as part of the Merkle proof,

participating in the token id calculation with a fixed value instead of obtaining it in real-time. However, this

undoubtedly increases the risk of excessive privileges for the project team.

Status

Acknowledged; After communicating with the project team, the project team stated that they allow users to perform

this operation.

[N20] [Suggestion] Redundant PoolMax enum



Category: Others

Content

In the NftID library, PoolID lists an enumeration of all the pools supported by the protocol, but PoolMax is not used

anywhere in the protocol, which is redundant.

Code location: contracts/smspool/Commons.sol#L22

enum PoolID {

    ...

    PoolMax

}

Solution

It is recommended to remove the redundant PoolMax enumeration.

Status

Fixed

[N21] [Information] Reward calculation for two stakers in GroupPool being the same user

Category: Design Logic Audit

Content

In the GroupPool contract, when a user performs a socialUnstake/forceSocialUnstake operation, a portion of the

bailed rewards of the initiator of the unstaking operation will be deducted and distributed to other users in the same

group. However, it should be noted that one of the users in the same group may also be the initiator because the

protocol allows the same user to provide two different NFTs for GroupPool staking. This means that a portion of the

initiator's penalized rewards still belong to the initiator themselves.

Code location:

contracts/smspool/GroupPool.sol#L130

contracts/smspool/GroupPool.sol#L181

    function socialUnstake/forceSocialUnstake(...) external override onlyManager 

returns(UnstakeReward[] memory) {

        ...

        if (initiator == ssInfo.staker1) {



            ...

        } else if (initiator == ssInfo.staker2) {

            ...

        } else {

            ...

        }

        ...

    }

contracts/smspool/StakingManager.sol#L192-L196

    function createMatch3Code(

        PoolID           pid,

        MatchPair memory p1,

        MatchPair memory p2,

        MatchPair memory p3,

        uint256          amount

    ) external {

        ...

        // not allowed: p1.staker == p2.staker == p3.staker

        require(

            p1.staker != p2.staker || p2.staker != p3.staker,

            "can not match self"

        );

        ...

    }

Solution

If this is not an intended design, it is recommended to check whether the initiator user has provided two NFTs when

unstaking and deduct their respective Bailed rewards accordingly.

Status

Acknowledged

[N22] [Low] Potentially incorrect social staking reward information in GroupPool

Category: Design Logic Audit

Content

As previously mentioned, GroupPool allows the same user to provide two NFTs for staking. However, during reward

settlement, stakerShareReward and bailed are calculated based on three different staking users. Therefore, in the

viewSocialStakeRewardInfo function, when obtaining the user's pendingRewards, it only considers the scenario



where the three stakers are different users, while overlooking the possibility that two of the stakers might be the same

user. This may cause the reward amount returned by the viewSocialStakeRewardInfo function to be lower than

expected.

Code location: contracts/smspool/GroupPool.sol#L294-L296

    function viewSocialStakeRewardInfo(uint256 matchCode, address staker, uint256 

gAccu) internal view returns(uint256) {

        ...

        if (staker == ssInfo.staker1)      return pendingRewards[matchCode][staker] + 

p.staker1ShareReward - p.bailed1;

        else if (staker == ssInfo.staker2) return pendingRewards[matchCode][staker] + 

p.staker2ShareReward - p.bailed2;

        else                               return pendingRewards[matchCode][staker] + 

p.staker3ShareReward - p.bailed3;

    }

Solution

It is recommended to handle the case where two of the three stakers are the same user.

Status

Fixed

[N23] [Low] Potential Denial of Service Risk

Category: Denial of Service Vulnerability

Content

In Pool, users can freely choose different pools for staking. Theoretically, users can stake their owned NFTs in pools

of different types or in different matchCodes within the same pool. The pool uses OpenZeppelin's EnumerableSet

library to record the pools or matchCodes that users have joined, and retrieves all the pools or matchCodes joined by

users through the values interface of EnumerableSet when claiming rewards. It is important to note that the values

operation copies the entire storage space to memory. If the user participates in a large number of pools or

matchCodes, the values operation will generate significant gas costs, potentially exceeding the block's gasLimit and

ultimately leading to DoS risks. Despite this, if a DoS issue arises, users can still avoid their rewards being locked by

claiming rewards individually.



Code location:

contracts/smspool/SinglePool.sol#L104

    function claimAllCustodialReward(address staker) public override onlyManager 

returns(uint256) {

        uint256 allReward;

        uint256[] memory matchCodes = custodialMatchCodes[staker].values();

        ...

    }

contracts/smspool/CouplePool.sol#L322

contracts/smspool/CouplePool.sol#L346

    function claimAllCustodialReward(address staker) public override onlyManager 

returns(uint256) {

        uint256 allReward;

        uint256[] memory custodialMatches = custodialMatchCodes[staker].values();

        ...

    }

    function claimAllSocialReward(address staker) public override onlyManager 

returns(uint256) {

        uint256 allReward;

        uint256[] memory joinedMatches = socialMatchCodes[staker].values();

        ...

    }

contracts/smspool/GroupPool.sol#L248

    function claimAllSocialReward(address staker) public override onlyManager 

returns(uint256) {

        uint256 allReward;

        uint256[] memory joinedMatches = socialMatchCodes[staker].values();

        ...

    }

Solution

One feasible approach is to limit the number of pools or matchCodes that users can participate in for staking.

Alternatively, storage with lower gas costs, such as lists, can be utilized.



Status

Acknowledged

[N24] [Suggestion] The validity of the pid was not checked when creating the pool

Category: Design Logic Audit

Content

In the StakingManager contract, operators can create pools using the createPool function, but the validity of the

passed-in pid value is not checked. Theoretically, the pid of a pool should only be between 1 and 7.

Code location: contracts/smspool/StakingManager.sol#L100

    function createPool(PoolID pid, address poolProxy, bytes memory data) external 

onlyRole(OperatorRole) {

        require(pools[pid] == address(0), "pool have created");

        require(poolProxy != address(0), "invalid proxy address");

        ...

    }

Solution

It is recommended to check the validity of the pid when creating a pool to avoid creating pools with unexpected pid

values.

Status

Fixed

[N25] [Suggestion] When creating a matchCode, it does not check whether the pool has been created.

Category: Design Logic Audit

Content

In the StakingManager contract, users can create matchCodes for social staking using the createMatch2Code and

createMatch3Code functions. However, when creating a matchCode, there is no check to verify if the pool

corresponding to the pid has already been created. If the pool has not been created, users will be unable to

successfully create a matchCode, and no error message will be thrown, which may cause confusion for users.

Code location: contracts/smspool/StakingManager.sol#L138,L171



    function createMatch2Code(

        PoolID           pid,

        MatchPair memory p1,

        MatchPair memory p2,

        uint256          amount

    ) external {

        ...

    }

    function createMatch3Code(

        PoolID           pid,

        MatchPair memory p1,

        MatchPair memory p2,

        MatchPair memory p3,

        uint256          amount

    ) external {

        ...

    }

Solution

It is recommended to check if the pool corresponding to the pid has already been created within the

createMatch2Code and createMatch3Code functions. If the pool has not been created, detailed error messages

should be thrown.

Status

Fixed

[N26] [Suggestion] There is an upper limit on the matchCodes available in the pool

Category: Design Logic Audit

Content

In the StakingManager contract, when a user creates a matchCode for social staking, the protocol assigns a

matchCode to this staking. The matchCode is obtained through the nextMatchCode function of the pool, which is

calculated using poolID * 10 ** 8 + matchCodeNonce . It is important to note that if the value of

matchCodeNonce exceeds 1e8, it will affect the matchCode of the next pool. In reality, it is highly unlikely for a pool

to have 1e8 matchCodes, but the project team should still remain attentive to this matter.

Code location: contracts/smspool/Pool.sol#L44



    function nextMatchCode() external override onlyManager returns(uint256) {

        ++matchCodeNonce;

        return uint256(poolID) * 10 ** 8 + matchCodeNonce;

    }

Solution

Alternative and more appropriate methods to calculate the matchCode may be worth considering.

Status

Fixed; The project team has increased the MatchCode limit to 1e10.

[N27] [Suggestion] Checks-Effects-Interactions are not followed when transferring out NFT

Category: Design Logic Audit

Content

In the StakingManager contract, the returnNftsBackAndClaimReward function is used to transfer users' staked NFTs

from the contract back to the users and claim social staking rewards for users through the claimSocialReward

function. The practice of transferring assets before modifying the contract state does not comply with the Checks-

Effects-Interactions pattern. Although it does not lead to reentrancy risks in the current business scenario, it cannot

be guaranteed that new exploitable business scenarios will not be introduced in the future.

Code location: contracts/smspool/StakingManager.sol#L435-L447

    function returnNftsBackAndClaimReward(uint256 matchCode) internal 

returns(UnstakeBenefit[] memory benefits) {

        ...

        for (uint i; i < len;) {

            uint8[2] memory nftIds = mcode.findIdByAddress(joinedStakers[i]);

            transferOutNft(mcode.poolID, nftIds[0], joinedStakers[i], amount);

            if (nftIds[1] != NftID.InvalidToken) {

                transferOutNft(mcode.poolID, nftIds[1], joinedStakers[i], amount);

            }

            uint256 benefit = claimSocialReward(mcode.poolID, matchCode, 

joinedStakers[i]);

            benefits[i] = UnstakeBenefit(joinedStakers[i], benefit);

            unchecked { ++i; }



        }

    }

Solution

It is recommended to use two for loops: first, use the claimSocialReward function to settle rewards, and then use

another for loop to transfer the NFTs.

Status

Confirmed

[N28] [Suggestion] Optimizable reward information update

Category: Gas Optimization Audit

Content

In the updateRewardInfo function of the GroupPool contract, the currently claimable social staking rewards are

calculated through the calculateStakeReward function, and the rewards are distributed to the stakers. It is important

to note that when users exit staking through the StakingManager contract, multiple calls to the updateRewardInfo

function may be involved in a single transaction. The pendingReward for reward settlement is only greater than 0

during the first call, and when pendingReward is 0, the updateRewardInfo function still performs reward distribution

operations, which will consume a lot of unnecessary gas.

Code location: contracts/smspool/GroupPool.sol#L216

    function updateRewardInfo(uint256 matchCode) internal {

        SocialStakeInfo3 memory ssInfo = socialStakeInfos[matchCode];

        uint256 pendingReward = calculateStakeReward(ssInfo.stakeInfo);

        ...

    }

Solution

It is recommended to check if pendingReward is greater than 0 in the updateRewardInfo function and only distribute

rewards when pendingReward is greater than 0.

Status

Fixed



[N29] [Medium] Risks of excessive privilege

Category: Authority Control Vulnerability Audit

Content

In the StakingManager contract, the admin role can upgrade any pool through the upgradePool function. Moreover, in

the protocol, except for the InviteReward, Airdrop, RFGToken, and NftCard contracts, all other contracts use an

upgradable model, where the admin of the proxy contract can arbitrarily upgrade these contracts. This leads to the

risk of excessive privileges.

In the Auction contract, after the auction is completed, the project team will calculate off-chain the users who can

obtain NFTs and the final auction price, and establish a Merkle proof for users to claim. This also increases the

centralization risk to a certain extent.

Code location:

contracts/smspool/StakingManager.sol#L95

    function upgradePool(PoolID pid, address newImpl, bytes memory data) external 

onlyRole(AdminRole) {

        require(1 <= uint8(pid) && uint8(pid) <= 7, "invalid pool id");

        IPoolUpgradable(pools[pid]).upgradeToAndCall(newImpl, data);

        emit PoolUpgraded(pid, newImpl, data);

    }

contracts/auction/Auction.sol#L180-L183

    function finishAuction(uint8 aucId, bytes32 merkleRoot, uint256 totalSold, 

uint256 price) external onlyRole(OperatorRole) {

        ...

        AuctionResult storage result = auctionResults[aucId];

        result.merkleRoot = merkleRoot;

        result.totalSold  = totalSold;

        result.price      = price;

        ...

    }

Solution

From a short-term perspective, to ensure the stable operation of the project in its early stages, assigning the above



privileged roles to a multi-signature wallet can effectively address the single point of failure risk, but it still cannot

mitigate the risk of excessive privileges. In the long run, when the project is running stably, transferring the protocol's

privileged roles to community governance can effectively alleviate the risk of excessive privileges.

Status

Acknowledged; After communicating with the project team, they stated that once the protocol is deployed, the

project team will use multisig for privilege management to mitigate single-point-of-failure risk. In the future, after the

protocol has been running stably, community governance will be enabled to thoroughly resolve the risk of excessive

centralization.

[N30] [Suggestion] Protocol Missing Emergency Operations Role

Category: Authority Control Vulnerability Audit

Content

The protocol has planned for multiple roles to manage different contracts, but it is important to note that the protocol

lacks an emergency pause functionality and a role to manage this function. When an emergency occurs in the

protocol, the emergency operation role can close the protocol through the pause function to minimize losses as

much as possible.

Solution

It is recommended that the protocol add an emergency pause functionality and a role to manage this function. The

emergency operation role can be assumed by an EOA to quickly handle emergency situations without the need to

contact other team members. It should also be noted that this role should only be used to manage the pause

permissions of the contracts and should not have any overlap with other permissions.

Status

Fixed

[N31] [Suggestion] Missing event records

Category: Others

Content

In the NftCard contract, the owner can modify the URI of the NFT through the setUri function, but no event is

recorded.



Code location: contracts/tokens/NftCard.sol#L80

    function setUri(string memory newUri) external onlyOwner {

        _setURI(newUri);

    }

Solution

It is recommended to record events for modifications of sensitive parameters to facilitate future self-inspection or

community auditing.

Status

Fixed

5 Audit Result

Audit Number Audit Team Audit Date Audit Result

0X002408130003 SlowMist Security Team 2024.07.29 - 2024.08.13 Medium Risk

Summary conclusion: The SlowMist security team uses a manual and SlowMist team's analysis tool to audit the

project, during the audit work we found 4 critical risks, 1 high risk, 4 medium risks, 6 low risk, 13 suggestions, and 3

information. 1 suggestion were confirmed; All other findings were fixed or acknowledged. The code was not

deployed to the mainnet. Since the protocol has not been deployed yet, its excessive privilege issue remains

unresolved, and therefore, the protocol is still at medium risk. Once the protocol is deployed, the project team will

use multisign wallet for privilege management to mitigate single-point-of-failure risk. After the protocol has been

running stably, community governance will be enabled to thoroughly resolve the risk of excessive centralization.



6 Statement

SlowMist issues this report with reference to the facts that have occurred or existed before the issuance of this

report, and only assumes corresponding responsibility based on these.

For the facts that occurred or existed after the issuance, SlowMist is not able to judge the security status of this

project, and is not responsible for them. The security audit analysis and other contents of this report are based on the

documents and materials provided to SlowMist by the information provider till the date of the insurance report

(referred to as "provided information"). SlowMist assumes: The information provided is not missing, tampered with,

deleted or concealed. If the information provided is missing, tampered with, deleted, concealed, or inconsistent with

the actual situation, the SlowMist shall not be liable for any loss or adverse effect resulting therefrom. SlowMist only

conducts the agreed security audit on the security situation of the project and issues this report. SlowMist is not

responsible for the background and other conditions of the project.




